Exclusive π⁰, η electroproduction in the resonance region at high Q².

Maurizio Ungaro, Kyungseon Joo

University of Connecticut Jefferson Laboratory

for the CLAS collaboration

Outline

- Introduction
- Experiment Overview
- Preliminary Results
- Summary

N* Program in CLAS

Map the γ NN* electrocouplings as a function of photon virtuality with a combined analysis of electroproduction channels

Access active degrees of freedom at various distances

Explore the non-perturbative strong interactions responsible for nucleon formation and the origin of quark confinement

Investigate the origin of 98% of nucleon mass through DCSB

DSE Full As work Caist control of Maryland Univ. of Maryland Trinit For otherset (Orsblin)

High Q² π^0 , η electroproduction

Experiment Overview

 $\sigma = \sigma(W, Q^2, \cos(\theta^*))$

 $d\sigma/d\Omega_{\pi} = \sigma_{T} + \varepsilon\sigma_{L} + \varepsilon\sigma_{TT}\cos 2\phi + \sqrt{2}\varepsilon(\varepsilon +)\sigma_{LT}\cos\phi + h\sqrt{2}\varepsilon(\varepsilon - 1)\sigma_{LT}\sin\phi$

Will detect: Electron, Proton

Will Extract:

- Cross sections, Structure Functions
- Beam Spin Asymmetries
- Helicity amplitudes and their Q² dependence

Experiment Overview

- October 2001 January 2002
- Beam Energy = 5.75 GeV
- Current Intensity = 10nA (10³⁴cm⁻²s⁻¹)
- 3.7 Billions triggers

B.H. Separation:

M.Ungaro

MENU, June 1 2010, College of William and Mary

B.H. Separation:

The typical angle between the emitted photon and the electron in B.H. processes is $\theta \sim m/E$

MENU, June 1 2010, College of William and Mary

Radiative Correction

exclurad

(Afanasev, Akushevich, Burkert, Joo) Input: Exclusive cross section

- No peaking approximation
- No soft-hard photon discrimination
- Radiation of 4 SF with angular dependence of each one (exclusive electroproduction)

W=1.29

Radiative Correction

exclurad

(Afanasev, Akushevich, Burkert, Joo) Input: Exclusive cross section

- No peaking approximation
- No soft-hard photon discrimination
- Radiation of 4 SF with angular dependence of each one (exclusive electroproduction)

Data:

- 🗸 Electron ID
- 🗸 Proton ID
- Vertex Correction, Selections
- Electron Fiducial Cut
- Proton Fiducial Cut
- Electron Momentum Correction
- Proton Momentum Correction
- ✓ Normalization Check
- ✓ Radiative Correction
- ✓ Bin Averaging Correction
- $\checkmark \pi^0$, η selection

Simulation:

- 🗸 Electron ID
- 🗸 Proton ID
- Vertex Correction, Selections
- Electron Fiducial Cut
- Proton Fiducial Cut
- ✓ Timing Resolution Match
- Momentum Resolution Match
- Acceptance Correction

To do list: Finalize Systematic Errors Collaboration Review Amplitudes extraction (JANR, DR, SAID)

W=1.59 Q²=3.5

45 bins in W, Δ W=20 MeV 7 bins in Q² DQ²/Q² ~ 0.18

10 bins in cos(θ*)
24, 48, 96 bins in φ*

Total: 75600 CS points

 π^0

MENU, June 1 2010, College of William and Mary

350 points out of 75K

350 points out of 75K

350 points out of 75K

 $d\sigma/d\Omega^* = \sigma_T + \varepsilon \sigma_L + \varepsilon \sigma_{TT} cos 2\phi + \sqrt{2}\varepsilon(\varepsilon+1)\sigma_{LT} cos \phi$

$$\sigma_L + \varepsilon \sigma_T = a$$
$$\sigma_{LT} = \frac{b}{\sin \theta \sqrt{2\varepsilon(\varepsilon + 1)}}$$
$$\sigma_{TT} = \frac{c}{\sin^2 \theta \varepsilon_T}$$

240 points out of 75K

 $d\sigma/d\Omega^* = \sigma_T + \varepsilon \sigma_L + \varepsilon \sigma_{TT} cos2\phi + \sqrt{2}\varepsilon(\varepsilon+1)\sigma_{LT} cos\phi$

$$\sigma_L + \varepsilon \sigma_T = a$$

$$\sigma_{LT} = \frac{b}{\sin \theta \sqrt{2\varepsilon(\varepsilon + 1)}}$$

$$\sigma_{TT} = \frac{c}{\sin^2 \theta \varepsilon_T}$$

240 points out of 75K

 $d\sigma/d\Omega^* = \sigma_T + \varepsilon \sigma_L + \varepsilon \sigma_{TT} cos2\phi + \sqrt{2}\varepsilon(\varepsilon+1)\sigma_{LT} cos\phi$

$$\sigma_{L} + \varepsilon \sigma_{T} = a$$

$$\sigma_{LT} = \frac{b}{\sin \theta \sqrt{2\varepsilon(\varepsilon + 1)}}$$

$$\sigma_{TT} = \frac{c}{\sin^{2} \theta \varepsilon_{T}}$$

240 points out of 75K

 $d\sigma/d\Omega^* = \sigma_T + \varepsilon\sigma_L + \varepsilon\sigma_{TT}cos2\phi + \sqrt{2}\varepsilon(\varepsilon+1)\sigma_{LT}cos\phi$

 $\sigma_L + \mathcal{E}\sigma_T = a$ $\sigma_{LT} = \frac{b}{\sin\theta\sqrt{2\mathcal{E}(\mathcal{E}+1)}}$ $\sigma_{TT} = \frac{c}{\sin^2\theta\mathcal{E}_T}$

$d\sigma/d\Omega^* = \sigma_T + \varepsilon\sigma_L + \varepsilon\sigma_{TT}cos2\phi + \sqrt{2}\varepsilon(\varepsilon+1)\sigma_{LT}cos\phi$

 $\sigma_L + \mathcal{E} \sigma_T = a$ $\sigma_{LT} = \frac{b}{\sin \theta \sqrt{2\mathcal{E}(\mathcal{E}+1)}}$ $\sigma_{TT} = \frac{c}{\sin^2 \theta \mathcal{E}_T}$

$$d\sigma/d\Omega^* = \sigma_{T} + \varepsilon\sigma_{L} + \varepsilon\sigma_{TT}\cos 2\phi + \sqrt{2\varepsilon(\varepsilon+1)}\sigma_{LT}\cos\phi$$

 $\sigma_L + \varepsilon \sigma_T = a$ $\sigma_{LT} = \frac{b}{\sin \theta \sqrt{2\varepsilon(\varepsilon + 1)}}$ $\sigma_{TT} = \frac{c}{\sin^2 \theta \varepsilon_T}$

$$d\sigma/d\Omega^* = \sigma_{T} + \varepsilon\sigma_{L} + \varepsilon\sigma_{TT}\cos 2\phi + \sqrt{2\varepsilon(\varepsilon+1)}\sigma_{LT}\cos\phi$$

 $\sigma_{L} + \varepsilon \sigma_{T} = a$ $\sigma_{LT} = \frac{b}{\sin \theta \sqrt{2\varepsilon(\varepsilon + 1)}}$ $\sigma_{TT} = \frac{c}{\sin^{2} \theta \varepsilon_{T}}$

dσ/dΩ* =
$$\sigma_{T}$$
 + ε σ_{L} + ε σ_{TT} cos2 ϕ + $\sqrt{2}\epsilon(\epsilon+1)\sigma_{LT}$ cos ϕ

 $\sigma_L + \varepsilon \sigma_T = a$ $\sigma_{LT} = \frac{b}{\sin \theta \sqrt{2\varepsilon(\varepsilon + 1)}}$ $\sigma_{TT} = \frac{c}{\sin^2 \theta \varepsilon_T}$

dσ/dΩ* =
$$\sigma_{T}$$
 + ε σ_{L} + ε σ_{TT} cos2 ϕ + $\sqrt{2}\epsilon(\epsilon+1)\sigma_{LT}$ cos ϕ

$$\sigma_L + \varepsilon \sigma_T = a$$
$$\sigma_{LT} = \frac{b}{\sin \theta \sqrt{2\varepsilon(\varepsilon + 1)}}$$
$$\sigma_{TT} = \frac{c}{\sin^2 \theta \varepsilon_T}$$

What about η ?

MENU, June 1 2010, College of William and Mary

What about $\eta?$

W=1.09 Q²=3.0

25 bins in W, Δ W=20 MeV 7 bins in Q² DQ²/Q² ~ 0.18

10 bins in $cos(\theta^*)$ 24 bins in ϕ^*

Total: 43750 points

η

MENU, June 1 2010, College of William and Mary

50

40

30

20

10

O

Summary, Outlook

To do list: JANR, DR, SAID analysis

Review: π^0 (by this summer) η (by this fall/winter)

The combined analysis of single and double meson channels is key to the N* program and to provide a high definition picture of the nucleon

Access active degrees of freedom at various distances

Explore the non-perturbative strong interactions responsible for nucleon formation and the origin of quark confinement

Gen / Rec Events

24 φ bins 200M Generated Events MAID2007 AAO_RAD

Electron ID
 Proton ID
 Vertex Correction, Selections
 Electron Fiducial Cut
 Proton Fiducial Cut
 Timing Resolution Match
 Momentum Resolution Match
 Drift Chamber Efficiencies
 π⁰ selection

W=1.49

Gen / Rec Events

96 ϕ bins **200M Generated Events MAID2007** AAO RAD

Flectron ID Proton ID Vertex Correction, Selections **Electron Fiducial Cut Proton Fiducial Cut** Timing Resolution Match Momentum Resolution Match **Drift Chamber Efficiencies** π^0 selection

W = 1.49

Generated